98. Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/ \
1 3
Output:
true
Example 2:
5
/ \
1 4
/ \
3 6
Output:
false
Explanation:
The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.
Thoughts:
- Inorder traversal + checking ascending property in serialized array
- Improving 1 by only recording the prev node
- Iteratively defining the left and right bound of the node
- Iterative Traversal (Generic to solve other problems such as Binary Tree Inorder Traversal, Kth Smallest in BST and Validate BST
Code 2:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode * prev = NULL;
return isValidBST(root, prev);
}
private:
bool isValidBST(TreeNode * root, TreeNode* & prev){ // !!important to add "&" since the prev will be changed
// as traversing down the BST
if(root == NULL) return true;
if(!isValidBST(root->left, prev)) return false;
if(prev != NULL && prev ->val >= root-> val) return false;
prev = root;
return isValidBST(root->right, prev);
}
};
Code 3:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean isValidBST(TreeNode root, long min, long max){
if(root == null) return true;
if(root.val >= max || root.val <= min) return false;
return isValidBST(root.left, min, root.val) && isValidBST(root.right, root.val, max);
}
}
Code 4:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
if(root == null) return true;
Stack<TreeNode> stack = new Stack<>();
TreeNode pre = null;
while (root != null || !stack.isEmpty()){
// left
while(root != null){
stack.push(root);
root = root.left;
}
root = stack.pop();
// do
if (pre!= null && pre.val >= root.val) return false;
// record predecessor
pre = root;
// right
root = root.right;
}
return true;
}
}
public int kthSmallest(TreeNode root, int k) {
Stack<TreeNode> stack = new Stack<>();
while(root != null || !stack.isEmpty()) {
while(root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
if(--k == 0) break;
root = root.right;
}
return root.val;
}
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root == null) return list;
Stack<TreeNode> stack = new Stack<>();
while(root != null || !stack.empty()){
while(root != null){
stack.push(root);
root = root.left;
}
root = stack.pop();
list.add(root.val);
root = root.right;
}
return list;
}