92.Backpack (LintCode, 单次选择+最大体积)
Description
Given n _items with size _Ai, an integer _m _denotes the size of a backpack. How full you can fill this backpack?
You can not divide any item into small pieces.
Have you met this question in a real interview?
Yes
Example
If we have4
items with size[2, 3, 5, 7]
, the backpack size is 11, we can select[2, 3, 5]
, so that the max size we can fill this backpack is10
. If the backpack size is12
. we can select[2, 3, 7]
so that we can fulfill the backpack.
You function should return the max size we can fill in the given backpack.
Challenge
O(n x m) time and O(m) memory.
O(n x m) memory is also acceptable if you do not know how to optimize memory.
Thoughts:
- 0 - 1 backpack problem
- Space-optimized Solution:
- dp[j] = for size j, there is a solution for current A[0, ... i] items
- dp[0] = True
- in reverse order: dp[j] |= dp[j - A[i]] # we can insert item A[i] into j
- solution : max i such that dp[i] == 1
- Non-optimized Solution:
- dp[i][j]: for (i - 1) th item i, whether size j contain full bag (0th is for initial state)
- dp[.][0] = True
- in left-right order: dp[i][j] = dp[i - 1][j - A[i - 1]] for j >= A[i - 1]
- real value Solution
Code T: 2614 ms O(m * n); S: O(m)
class Solution:
"""
@param m: An integer m denotes the size of a backpack
@param A: Given n items with size A[i]
@return: The maximum size
"""
def backPack(self, m, A):
# write your code here
dp = [0 for _ in range(m + 1)]
dp[0] = 1
for i in range( len(A) ):
for j in range(m, A[i ]-1, -1):
dp[j] |= dp[j - A[i]]
for i in range(m, -1, -1):
if dp[i]:
return i
return 0
Code T: O(m * n) 6288 ms; S: O(m * n)
class Solution:
"""
@param m: An integer m denotes the size of a backpack
@param A: Given n items with size A[i]
@return: The maximum size
"""
def backPack(self, m, A):
# write your code here
dp = [[0 for j in range(m + 1)] for i in range(len(A) + 1)]
for i in range(len(dp)):
dp[i][0] = 1
# print('m + 1: {}; n + 1: {}'.format(len(dp),len(dp[0])))
for i in range(1, len(A) + 1):
for j in range (m + 1):
# print('i: {}; j: {}'.format(i,j))
dp[i][j] = dp[i-1][j]
if j >= A[i-1] and dp[i - 1][j - A[i - 1]]:
dp[i][j] = 1
for j in range(m, -1 , -1):
if dp[len(A)][j]:
return j
return 0
Code T: O(m * n) 2397 ms; S: O(m)
public class Solution {
public int backPack(int m, int[] A) {
int[] dp = new int[m+1];
for (int i = 0; i < A.length; i++) {
for (int j = m; j > 0; j--) {
if (j >= A[i]) {
dp[j] = Math.max(dp[j], dp[j-A[i]] + A[i]);
}
}
}
return dp[m];
}
}