18. 4Sum
Given an array S of n integers, are there elements a,b,c, and d in S such that a+b+c+d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
Thoughts:
- Naive way: break down problems into 3Sum -> Two Sum; In general: for sum, use recursion to break down to (k-1)->(k-2) until reaching 2, which is solved using the algorithm for two Sum
- Since we need ALL solutions, tricks for removing duplicates, as adopted in 3Sum is also adopted.
- When k > 2, I prefer using two pointers as the time complexities is no longer dominant by sorting (O(nlogn)).
public class Solution {
public List<List<Integer>> fourSum(int[] num, int target) {
ArrayList<List<Integer>> ans = new ArrayList<>();
if(num.length<4)return ans;
Arrays.sort(num);
for(int i=0; i<num.length-3; i++){
if(num[i]+num[i+1]+num[i+2]+num[i+3]>target)break; //first candidate too large, search finished
if(num[i]+num[num.length-1]+num[num.length-2]+num[num.length-3]<target)continue; //first candidate too small
if(i>0&&num[i]==num[i-1])continue; //deduplicates
for(int j=i+1; j<num.length-2; j++){
if(num[i]+num[j]+num[j+1]+num[j+2]>target)break; //second candidate too large
if(num[i]+num[j]+num[num.length-1]+num[num.length-2]<target)continue; //second candidate too small
if(j>i+1&&num[j]==num[j-1])continue; //prevents duplicate results in ans list
int low=j+1, high=num.length-1;
while(low<high){
int sum=num[i]+num[j]+num[low]+num[high];
if(sum==target){
ans.add(Arrays.asList(num[i], num[j], num[low], num[high]));
while(low<high&&num[low]==num[low+1])low++; //skipping over duplicate on low
while(low<high&&num[high]==num[high-1])high--; //skipping over duplicate on high
low++;
high--;
}
//move window
else if(sum<target)low++;
else high--;
}
}
}
return ans;
}
Special thanks: 洗刷刷 for the reference!