622. Design Circular Queue
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k)
: Constructor, set the size of the queue to be k.Front
: Get the front item from the queue. If the queue is empty, return -1.Rear
: Get the last item from the queue. If the queue is empty, return -1.enQueue(value)
: Insert an element into the circular queue. Return true if the operation is successful.deQueue()
: Delete an element from the circular queue. Return true if the operation is successful.isEmpty()
: Checks whether the circular queue is empty or not.isFull()
: Checks whether the circular queue is full or not.
Example:
MyCircularQueue circularQueue = new MycircularQueue(3); // set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4
Note:
- All values will be in the range of [0, 1000].
- The number of operations will be in the range of [1, 1000].
- Please do not use the built-in Queue library.
Thoughts: Having two pointers , fast and slow and a size, capacity variables to track the current capacity status
- Init: slow = 0; fast = -1; size = 0
class MyCircularQueue {
int size, slow, fast, C;
int data [];
/** Initialize your data structure here. Set the size of the queue to be k. */
public MyCircularQueue(int k) {
slow = 0; fast = -1; size = 0; C = k;
data = new int [k];
}
/** Insert an element into the circular queue. Return true if the operation is successful. */
public boolean enQueue(int value) {
if (isFull()) return false;
fast = (fast + 1) % C;
data[fast] = value;
size ++;
return true;
}
/** Delete an element from the circular queue. Return true if the operation is successful. */
public boolean deQueue() {
if(size == 0) return false;
slow = (slow + 1) % C;
size--;
return true;
}
/** Get the front item from the queue. */
public int Front() {
if (isEmpty()) return -1;
return data[slow];
}
/** Get the last item from the queue. */
public int Rear() {
if (isEmpty()) return -1;
return data[fast];
}
/** Checks whether the circular queue is empty or not. */
public boolean isEmpty() {
return size == 0;
}
/** Checks whether the circular queue is full or not. */
public boolean isFull() {
return size == C;
}
}
/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue obj = new MyCircularQueue(k);
* boolean param_1 = obj.enQueue(value);
* boolean param_2 = obj.deQueue();
* int param_3 = obj.Front();
* int param_4 = obj.Rear();
* boolean param_5 = obj.isEmpty();
* boolean param_6 = obj.isFull();
*/