101. Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree[1,2,2,3,4,4,3]
is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following[1,2,2,null,3,null,3]
is not:
1
/ \
2 2
\ \
3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
Thoughts:
- Recursively: each call needs to check the current two nodes value and need to recursively call two pairs: (left.left, right.right) and (left.right, right.left).
- Iteratively: Same logic; Using stack, each time check the and push the corresponding pairs of child node into the stack
Code: Recursive
public boolean isSymmetric(TreeNode root) {
return root==null || isSymmetricHelp(root.left, root.right);
}
private boolean isSymmetricHelp(TreeNode left, TreeNode right){
if(left==null || right==null)
return left==right;
if(left.val!=right.val)
return false;
return isSymmetricHelp(left.left, right.right) && isSymmetricHelp(left.right, right.left);
}
Code: Iterative
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null) return true;
Stack<TreeNode> s = new Stack<TreeNode>();
s.push(root.left);
s.push(root.right); // relative ordering in the pair does not matter
TreeNode l, r;
while(!s.empty()){
l = s.pop(); r = s.pop();
if(l == null && r == null) continue;
if(l == null || r == null || l.val != r.val) return false;
s.push(l.left); s.push(r.right); // relative ordering in the pair does not matter
s.push(l.right); s.push(r.left);
}
return true;
}
}