124. Binary Tree Maximum Path Sum (any node to any node)
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
For example:
Given the below binary tree,
1
/ \
2 3
Return6
.
Thoughts:
in top down order, for each node do:
- calculate the current path sum, update the record
- pass the larger branched sum value to the parent
Code:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
int answer;
public:
int maxPathSum(TreeNode* root) {
answer = INT_MIN;
maxPathSumDown(root);
return answer;
}
int maxPathSumDown(TreeNode * cur){
if(!cur) return 0;
int left = max(0, maxPathSumDown(cur->left));
int right = max(0, maxPathSumDown(cur->right));
answer = max(answer, left + right + cur ->val);
return max(left, right) + cur->val;
}
};
Code without global variable
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
int answer;
public:
int maxPathSum(TreeNode* root) {
answer = INT_MIN;
maxPathSumDown(root);
return answer;
}
int maxPathSumDown(TreeNode * cur){
if(!cur) return 0;
int left = max(0, maxPathSumDown(cur->left));
int right = max(0, maxPathSumDown(cur->right));
answer = max(answer, left + right + cur ->val);
return max(left, right) + cur->val;
}
};
Code (Python)
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
maxVal = float("-inf")
def maxPathSum(self, root):
"""
:type root: TreeNode
:rtype: int
"""
self.maxPathDown(root)
return self.maxVal
def maxPathDown(self, cur):
if not cur:
return 0
left = max(0, self.maxPathDown(cur.left))
right = max(0, self.maxPathDown(cur.right))
self.maxVal = max(self.maxVal, left + right + cur.val)
return max(left, right) + cur.val