110. Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of _every _node never differ by more than 1.
Example 1:
Given the following tree[3,9,20,null,null,15,7]
:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree[1,2,2,3,3,null,null,4,4]
:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return isBalancedHelper(root) != -1;
}
private int isBalancedHelper(TreeNode root){
if (root == null) return 0;
int left = isBalancedHelper(root.left);
int right = isBalancedHelper(root.right);
if (left == -1 || right== -1|| Math.abs(left - right) > 1) return -1;
return Math.max(left, right) + 1;
}
}
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
# class Solution {
# public boolean isBalanced(TreeNode root) {
# return isBalancedHelper(root) != -1;
# }
# private int isBalancedHelper(TreeNode root){
# if (root == null) return 0;
# int left = isBalancedHelper(root.left);
# int right = isBalancedHelper(root.right);
# if (left == -1 || right== -1|| Math.abs(left - right) > 1) return -1;
# return Math.max(left, right) + 1;
# }
# }
class Solution(object):
def isBalanced(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
def helper(root):
if not root: return 0
left, right = helper(root.left), helper(root.right)
if left == -1 or right == -1 or abs(left - right) > 1: return -1
return max(left, right) + 1
return helper(root) != -1